Interfacial structure and orientation of confined ionic liquids on charged quartz surfaces.
نویسندگان
چکیده
Atomistic molecular dynamics simulations have been performed to study microscopic ionic structures and orientational preferences of absorbed [BMIM] cations and four paired anions ([BF4], [PF6], [TFO] and [TF2N]) on quartz surfaces. Two chemically different quartz surface models were adopted: one is saturated with silanol Si(OH)2 groups, and the other one is covered by silane SiH2 groups, respectively. Simulation results reveal that dense ionic layers, characterized by distinct mass, number, charge and electron densities, are formed in quartz interfacial region. The orientational preferences of confined ionic groups are characterized with different features depending on the size and shape of anionic groups, and the quartz surface charge. The [BMIM] cations attach exclusively onto the negatively charged Si(OH)2 surface. The imidazolium rings lie preferentially perpendicular to Si(OH)2 surface, to which the directly connected methyl and butyl chains are oriented and elongated along Si(OH)2 surface, respectively. The anions are mainly absorbed on positively charged SiH2 surface. The main axes of asymmetric [TFO] and [TF2N] anions are perpendicular and parallel to SiH2 surface, respectively. Such distinct structural and orientational preferences of confined ionic groups attribute to the strong electrostatic interactions and the formation of hydrogen bonds between confined ionic species and quartz interfacial groups.
منابع مشابه
Interfaces between Charged Surfaces and Ionic Liquids: Insights from Molecular Simulations
Interfacial effects in (room temperature) ionic liquids at charged surfaces are very important for ionic liquids applications in electrochemistry,1 energy storage,2 catalysis3 and other areas (e.g., lubrication4,5). However despite the many articles published on this subject (several hundred papers just in 2013) there is still no general agreement in the literature about the main factors that g...
متن کاملLayering of ionic liquids on rough surfaces.
Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (<9 nm RMS) in 1-hexyl-3-methylimidazolium bis(trif...
متن کاملClassical Density Functional Study on Interfacial Structure and Differential Capacitance of Ionic Liquids near Charged Surfaces
We designed a coarse-grained model for aromatic ionic liquids [CnMIM [Tf2N −] with cations containing different alkyl groups. Within the framework of correlation-corrected density functional theory, the interfacial structure of studied ionic liquids are compared over a range of surface charge densities, alkyl chain lengths and surface geometries. The nonpolar hydrocarbon chains on cation tend t...
متن کاملPhase-referenced nonlinear spectroscopy of the α-quartz/water interface
Probing the polarization of water molecules at charged interfaces by second harmonic generation spectroscopy has been heretofore limited to isotropic materials. Here we report non-resonant nonlinear optical measurements at the interface of anisotropic z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. We find that the product of the third-orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 42 شماره
صفحات -
تاریخ انتشار 2014